Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 181: 108222, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948865

RESUMO

The recent United Kingdom (UK) Environment Act consultation had the intention of setting two targets for PM2.5 (particles with an aerodynamic diameter less than 2.5 µm), one related to meeting an annual average concentration and the second to reducing population exposure. As part of the consultation, predictions of PM2.5 concentrations in 2030 were made by combining European Union (EU) and UK government's emissions forecasts, with the Climate Change Committee's (CCC) Net Zero vehicle forecasts, and in London with the addition of local policies based on the London Environment Strategy (LES). Predictions in 2018 showed 6.4% of the UK's area and 82.6% of London's area had PM2.5 concentrations above the World Health Organization (WHO) interim target of 10 µg m-3, but by 2030, over 99% of the UK's area was predicted to be below it. However, kerbside concentrations in London and other major cities were still at risk of exceeding 10 µg m-3. With local action on PM2.5 in London, population weighted concentrations showed full compliance with the WHO interim target of 10 µg m-3 in 2030. However, predicting future PM2.5 concentrations and interpreting the results will always be difficult and uncertain for many reasons, such as imperfect models and the difficulty in estimating future emissions. To help understand the sensitivity of the model's PM2.5 predictions in 2030, current uncertainty was quantified using PM2.5 measurements and showed large areas in the UK that were still at risk of exceeding the WHO interim target despite the model predictions being below 10 µg m-3. Our results do however point to the benefits that policy at EU, UK and city level can have on achieving the WHO interim target of 10 µg m-3. These results were submitted to the UK Environment Act consultation. Nevertheless, the issues addressed here could be applicable to other European cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Cidades , Reino Unido , Monitoramento Ambiental/métodos
2.
Environ Sci Technol ; 47(5): 2346-52, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23343109

RESUMO

The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.


Assuntos
Movimentos do Ar , Poluentes Atmosféricos , Aeronaves , Aeroportos/instrumentação , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...